A THEORETICAL APPROACH TO SUBSTITUENT EFFECTS1

INTERACTION BETWEEN DIRECTLY BONDED GROUPS IN THE ISOELECTRONIC SERIES XNH₃+, XCH₃, AND XBH₃-

ADDY PROSS⁴² and LEO RADOM⁴
Research School of Chemistry, Australian National University, Canberra, A.C.T. 2600, Australia

(Received in UK 23 August 1979)

Abstract—Ab initio molecular orbital theory including full geometry optimization at the 4-31G level is used to examine the interactions between substituents $X(X = Li, BeH, BH_2, CH_3, NH_2, OH and F)$ and substrates $Y(Y = NH_3^+, CH_3, BH_3^-)$ in the isoelectronic ceries XNH_3^+ , XCH_3 and XBH_3^- . The results indicate that the interaction energies are dominated by σ -effects. NH_3^+ is found to interact favorably with the σ -donors (e.g. Li, BeH and BH₂) and unfavorably with the σ -acceptors (e.g. F, OH, NH₂). The reverse pattern is observed for XBH_3^- . The range of interaction energies for XCH_3 is considerably smaller than for XNH_3^+ and XBH_3^- .

In recent publications^{1,3} we have attempted to build up a qualitative picture of substituent interactions in a variety of systems. These have included poly-substituted benzenes^{1a,1d,3} as well as directly bonded groups. ^{1b,1c} The key factor governing substituent interactions appears to be the difference in the electron-donating or accepting properties of the interacting substituents: powerful electron donors interact favorably with powerful electron acceptors.

In order to assess this principle in greater detail, we have examined the interaction between substituent groups involving the first-row elements (viz. Li, BeH, BH₂, CH₃, NH₂, OH and F) with the isoelectronic substrates NH₃⁺, CH₃ and BH₃⁻. Since NH₃⁺ represents a powerful electron acceptor, CH₃ a group with fairly weak electron-donating or-accepting ability and BH₃⁻ a powerful electron donor, we would hope through this study to augment our understanding of substituent interactions.

COMPUTATIONAL METEROD AND RESULTS

Standard ab initio molecular orbital calculations were carried out using a modified version of the Gaussian 70

system of programs⁴ and the 4-31G⁵ (for H,B,C,N,O and F) and 5-21G⁶ (for Li and Be) basis sets.⁷ Subject to specified symmetry constraints, all structures were fully optimized using a gradient optimization technique.⁸ Total energies (denoted 4-31G//4-31G) for XNH₃⁺ and XBH₃⁻ are listed in Table 1.⁹ Corresponding optimized geometries are displayed in Figs. 1 and 2. Bond lengths are in Angstroms and bond angles in degrees. Corresponding data for XCH₃ are available from Ref. 10.

We were unable to obtain a satisfactory wavefunction for LiBH₃. For this system, a positive eigenvalue was found for the highest occupied orbital in the 4-31G calculation. In addition, the optimized structure contained an abnormally long Li···B bond. We have therefore not included results for this system in the comparisons below.

Energies of interaction (E_m) of groups X and Y may be obtained as the energy changes in the formal reactions (1):

$$X-Y+H-H\rightarrow H-X+H-Y$$
 (1)

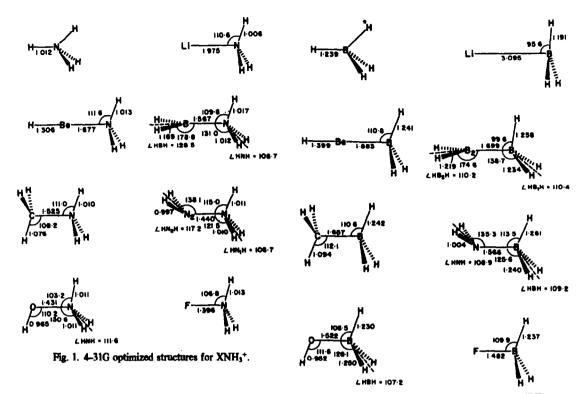

A positive E value indicates that the X-Y and H-H

Table 1. Calculated total energies (Hartrees) for 4-31G optimized structures of substituted ammonium ions (XNH₃+) substituted borate ions (XBH₃-)

X	XNH ₃ +	XBH ₃	
н	-56.45888 ⁸		
Li	-63.41716	(-33.75519) ^b	
Bell	-71.11785	-41.52847	
BH ₂	-81.68881	-52.13166	
CH ₃	-95.44076	-65.91187	
NH ₂	-111.35666	-81.89184	
OH	-131.11771	-101.72048	
F	-155.06048	-125.73515	

a Data taken from ref. 11.

b See text.

bonds are together stronger than the H-X and H-Y bonds. Since H₂ is involved in the defining reactions for all the interaction energies, relative values of E_{int} simply compare the interaction of X and Y with the sum of the separate interactions of X with H and Y with H. E_{int} values for XNH₃⁺, XCH₃ and XBH₃⁻ appear in Table 2.

Stabilization energies for a substituent X, bonded to either NH₃⁺ or BH₃⁻, are defined as the energies of reaction (2) (for NH₃⁺) or (3) (for BH₃⁻).

 $XBH_3^- + CH_4 \rightarrow XCH_3 + BH_4^-$

$$XNH_3^+ + CH_4 \rightarrow XCH_3 + NH_4^+$$
 (2)

Fig. 2. 4-31G optimized structures for XBH₃⁻. For LiBH₃⁻, see text.

The stabilization energies measure how effectively a substituent, X, interacts with NH₃⁺ (or BH₃⁻) compared to its interaction with CH₃. Positive values indicate a favorable interaction between X and either of the charged species compared to CH₃. Stabilization energies for XNH₃⁺ and XBH₃⁻ are listed in Table 3.

DESCUSSION

The E_{tot} values listed in Table 2 indicate that interaction energies involving the groups NH₃⁺ and BH₃⁻ span a much wider range than those involving the CH₃

Table 2. Interaction energies* (E_{tat.} 4-31G//4-31G, kcal mol⁻¹) for XNH₃+, XCH₃ and XBH₃-

(3)

x	XNH3 ⁺	XCH3 ^b	XBH ₃
н	0.0	0.0	0.0
Li	67.6	-19.0	¢
ВеН	19.6	-8.1	-15.0
BH ₂	4.7	-8.6	-9.6
CH ₃	-19.5	-23.1	-16.1
NH ₂	-51.5	-30.1	-7.9
ОН	-77.2	-31.4	8.9
F	-99.7	-26.1	31.5

a Interaction energies defined as the energy of the reaction:

$$XY + H_2 + HX + HY$$

b 4-31G//4-31G results for XCH₃ taken from ref.10.

C See text.

XNH. XBH 3 X 0.0 н 0.0 Li 86.6 c ReH 27.6 -6.9 13.3 -1.0 BH2 +7.0 CHa -3.6-21.4 +22.2 NH₂ +40.3 OH -45.8 F -73.6 +57.6

Table 3. Stabilization energies^a (4-31G//4-31G, kcal mol⁻¹) for XNH₃^{+a} and XBH₃^{-b}

^b Stabilization energies defined as the energy of the reaction:

group. Thus for NH₃⁺ the range extends from +67.6 to -99.7, for BH₃⁻ from +31.5 to -15.0 while for CH₃ the corresponding range is from -8.1 to -31.4 kcal mol⁻¹. This difference reflects the powerful electron transfer properties of NH₃⁺ and BH₃⁻ compared to CH₃. Thus NH₃⁺, a powerful electron acceptor, tends to interact particularly favorably with electron donors (e.g. Li) while interacting particularly unfavorably with electron acceptors (e.g. F). For BH₃⁻ the reverse pattern is observed. CH₃, being an intrinsically weak electron donor or acceptor does not interact strongly with either donors or acceptors and hence the small E_{tot} range.

An alternative means of examining the interaction of substituents with NH₃⁺ and BH₃⁻ is to use CH₃ as a reference (eqns 2 and 3). Stabilization energies obtained in this way (Table 3) indicate that the electropositive groups (Li, BeH and BH₂) interact favorably with NH₃ (as concluded from the E_{tot} values), the energies increasing in the order BH₂ < BeH < Li. This reflects the σ electron donating ability of these groups, which increases in the same order. The electronegative groups (NH₂, OH and F) interact unfavorably with NH₃⁺, with the stabilization energies increasing (becoming less negative) in the order F<OH<NH₂. Again this order reflects the decreasing electronegative character of the substituents along the series. For BH₃ - the reverse pattern is obtained. BH3 interacts unfavorably with the electropositive groups and favorably with the electronegative groups.

Inspection of Table 3 indicates that the range of stabilization energies observed for NH₃⁺ for the substituents studied (160 kcal mol⁻¹) considerably exceeds the corresponding range for BH₃⁻ (65 kcal mol⁻¹). This effect may be attributed to the relative lengths of N-X and B-X bonds in XNH₃⁺ and XBH₃⁻. The data in Figs. 1 and 2 reveal that the N-X bonds are invariably shorter than the corresponding B-X lengths. It is these shorter N-X lengths which are apparently responsible for ac-

centuating the substituent effects (both favorably and unfavorably).

It is of interest to establish whether the charge transfer from X to Y in the system X-Y takes place through the σ - or π -system. In principle, a group of the type AH₃ may act either as a π -donor or a π -acceptor since it possesses two degenerate occupied $\pi(AH_3)$ orbitals (which may act as π -donors) as well as two degenerate vacant $\pi^*(AH_3)$ orbitals (which may act as π -acceptors). Mulliken charges for XNH₃⁺, XCH₃, and XBH₃⁻ for X = Li, BeH and F (for which a separation into σ - and π -components is possible) are listed in Table 4. Positive values indicate electron transfer from the AH₃ group to the substituent X.

The data indicate that σ -charge transfer is almost always considerably greater than π -charge transfer. This suggests also that interaction energies are largely determined by the σ -component of the total charge transfer. Only for HBeBH₃⁻, which constitutes a particularly effective π -transfer system (HBe is a good π -acceptor, while BH₃⁻ is a good π -donor) but a poor σ -transfer system (both are generally σ -donors, though here HBe acts as an acceptor) are the σ - and π -charge transfers of similar magnitude.

The relative π -donating abilities of NH₃⁺, CH₃ and BH₃⁻ (i.e. positive hyperconjugation) are reflected in the π -charge acceptance by BeH (Table 4). The values increase in the order NH₃⁺ < CH₃ < BH₃⁻. This is consistent with the anticipated effect of a reduced nuclear charge on the energy levels of the group orbitals. Reducing the positive charge on the central atom is expected to raise the energy of both occupied orbitals (making these better donors) and unoccupied orbitals (making these worse acceptors). The energy levels are schematically illustrated in Fig. 3.

An intriguing point is that the π -donating ability of F in FY appears to increase in the order $Y = NH_3^+ < CH_3 < BH_3^-$. This is contrary to the prediction based on

^a Stabilization energies defined as the energy of the reaction:

^C See text.

Table 4. Mulliken charges for XY for X = Li. HBe and F and Y = NH₁+. CH₁ and BH₂-

X	NH3 ⁺		CH ₃		BH ₃	
	٩٥	q _m	q _o	q _w	٩٥	q
Lí	-0.859	+0.010	-0.502	+0.041	a	•
BeH	-0.787	+0.014	-0.441	+0.050	+0.098	+0.091
F	+0.183	-0.036	+0.523	-0.059	+0.720	-0.089

^a See text.

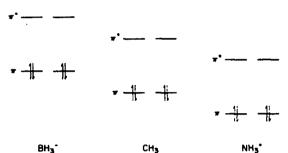


Fig. 3. Schematic representation of highest occupied orbitals and lowest unoccupied orbitals of BH₃⁻, CH₃ and NH₃⁺ groups.

the effect of variable nuclear charge and implied by Fig. 3. However, it appears that the reversal in the expected π-accepting abilities of NH₃⁺, CH₃ and BH₃⁻ stems from the drastic change in the σ -interaction of F within the series FNH₃+, FCH₃ and FBH₃-. When F is bonded to NH₃+, all orbitals on F are substantially lowered in energy due to the powerful electron-withdrawing effect of the NH₃⁺ groups. Conversely, when F is bonded to BH₃, all orbitals on F are substantially increased in energy due to the powerful electron-donating nature of the BH₃ group. This lowering (raising) of orbital energies by an electron-withdrawing (releasing) group has been termed a deshielding (shielding) effect,3 and has been previously discussed by us in relation to substituent interactions in substituted benzenes. Thus, despite the fact that the π^+ orbitals of NH₃⁺ are lower than those of BH₃, the deshielding effect of the NH₃ group and the shielding effect of the BH₃ group on the F lone pairs lead to smaller #-donation by F in FNH3+ then FBH3-Thus, the shielding effect in the series FNH₃⁺, FCH₃ and FBH₃ appears to dominate the intrinsic π -accepting abilities of the AH₃ groups.

CONCLUSIONS

This study confirms the intuitive expectation that XNH_3^+ systems are stabilized by σ -electron-donating substituents X (= Li, BeH, BH₂) and destabilized by σ -electron-accepting substituents X (= NH₂, OH, F).

The reverse results are observed for XBH₃⁻. Interaction energies for XCH₃ lie between those of XNH₃⁺ and XBH₃⁻ and span a narrower range of values. The π -donating abilities of the NH₃⁺, CH₃ and BH₃⁻ groups increase in the order NH₃⁺ < CH₃ < BH₃⁻ as expected on the basis of electronegativity arguments. On the other hand, and contrary to electronegativity arguments, the π -accepting abilities as reflected in results for X = F increase in the same order NH₃⁺ < CH₃ < BH₃⁻. This result may be attributed to the deshielding effect of NH₃⁺ and the shielding effect of BH₃⁻ on the donor orbitals of X, leading respectively to weaker and stronger π -donation by X.

REFERENCES

¹For previous papers in this series see, ⁴ A. Pross, L. Radom and R. W. Taft, J. Org. Chem., in press; ⁵ A. Pross and L. Radom, J. Am. Chem. Soc. 100, 6572 (1978); ⁴ A. Pross and L. Radom, J. Comput. Chem., in press; ⁴G. Kemister, A. Pross, L. Radon and R. W. Taft, J. Org. Chem., in press.

²Permanent address: Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.

 A. Pross and L. Radom, Prog. Phys. Org. Chem. in press.
 W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton and J. A. Pople, Program No. 236, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana; D. Poppinger, M. A. Vincent, A. L. Hinde and L. Radom, unpublished.
 R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys. 54,

²⁴ R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys. 54, 724 (1971); W. J. Hehre and J. A. Pople, J. Chem. Phys. 56, 4233 (1972).

⁶J. D. Dill and J. A. Pople, J. Chem. Phys. 62, 2921 (1975); ⁵J. S. Binkley and J. A. Pople, Ibid. 66, 879 (1977).

We use the term "4-31G" throughout this paper to represent this combination of basis sets.

D. Poppinger, Chem. Phys. Lett. 34, 332 (1975).

Previous papers dealing with subsets of the XNH₃⁺ systems treated here include: "A. C. Hopkinson and I. G. Csizmadia, *Theoret. Chim. Acta* 34, 93 (1974); "W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle and J. A. Pople, *Progr. Phys. Org. Chem.* 11, 175 (1974).

¹⁰A. Pross, D. J. DeFrees, B. A. Levi, S. K. Pollack, L. Radom and W. J. Hehre, to be published.

¹¹W. A. Lathan, W. J. Hehre, L. A. Curtiss and J. A. Pople, J. Am. Chem. Soc. 93, 6377 (1971).